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The dynamics of a nonlinear modulated cross-wave of resonant frequency w1 and 
carrier frequency w z w1 is considered. The wave is excited in a long channel of width 
b that contains water of depth d, which is subjected to a vertical oscillation of 
frequency 2w. As has been shown by Miles (1984b), the complex amplitude satisfies 
a cubic Schrodinger equation with weak damping and parametric driving. The 
stability of its solitary wave solution is considered here in various parameter regions. 
We find that in a certain regime the solitary wave is stable. Completely new is the 
result of instability outside this parameter regime. The instability has also been 
verified numerically. It is shown that the final stage of solitary wave instability is a 
cnoidal-wave-type solution. 

1. Introduction 
This investigation was stimulated by a recent paper by Miles (19843) who 

succeeded in developing a theory for the standing solitary wave observed by Wu, 
Keolian & Rudnick (1984). The wave appears owing to Faraday resonance, in which 
standing waves are parametrically excited in a basin that is subjected to a vertical 
oscillation at  a frequency approximately twice the natural frequency of the 
dominant cross-wave. For the details of the theory we refer to the original articles of 
Miles (1984a, b) and Larraza & Putterman (1984). We shall use the notation of Miles 
in this paper. 

The basic result of Miles is the cubic nonlinear Schrodinger equation 

i (r ,+ar)+Br, ,+(p+AJrl ' )r+yr* = 0 (1 .1)  

for the complex amplitude of the dominant cross-wave. Here, a is the linear damping 
(a > 0 )  and the terms pr and vr* appear because of the vertical oscillation z = 
a, cos 2wt in the gravitational field - g i .  Introducing a smallness parameter 6 (which 
also characterizes the amplitude of the otherwise nonlinear oscillation), one defines 

and 

The frequency w approximates the natural frequency w1 = (gk tanh kd)f, where k is 
the carrier wavenumber. p can have either sign : for kd + 00, /3 < 0 whereas for finite 
kd-values f3 > 0 is possible. In addition, since 

B E  T+kd(l-T2), (1.4) 
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Y 
y = a  

FIQURE 1. Bifurcation diagrams for X-independent stationary solutions for (a) /? > 0, ( b )  B = 0, and 
(c) p < 0. Stable (-), unstable (----), and modulationally unstable (- x - x - x -) branches 
can be recognized. 

with T = tanh kd,  we always have B > 0. On the other hand, 

A Q(6T4-5T2+16-9T-2) (1.5) 

is a monotonically increasing function of kd with negative values for T + 0, and A + 
1 for T + f  1. Thus A can have either sign, but for solitary wave solutions A > 0 is 
required since B > 0. Without loss of generality in the following we set A = B = 1. 
By rescaling the amplitude, the X-coordinate, as well as u, p, and y ,  we can always 
obtain this simplification for A ,  B > 0. 

When looking for X-independent solutions we can summarize some well-known 
results. First r = 0 is always a solution. For a/y < 1 (necessary condition) additional 
solutions Irl exp (irp) can appear with 

= -PT(YLCL.2 ) f  (1.6) 

and cos2g,=f ( 1-- ;I): 
Thus, if p < 0 four solutions appear in the region (p2 + a2)i > y > a, and only two of 
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them remain for y > (p2 +a2);. In the other case (p  2 O), two X-independent solutions 
are always present for y > a. The situation is schematically shown in figure 1. 

In that figure we have also included the stability results. The latter can be 
obtained in a straightforward manner within a linear stability analysis. We 
distinguish between stable, unstable, and modulationally unstable X-independent 
solutions. In our notation, stability and instability are first decided within a 
completely X-independent model. When the so-far stable solution becomes unstable 
with respect to X-dependent perturbations we call it modulationally unstable. To 
distinguish the various bifurcation branches it is advisable to introduce a new 
parameter 

g = - ycos Q. (1.8) 

Using the latter, we find, for example, the instability criterion for the solution (1.6) 
and (1.7) in the form 

/32-[K2+p-2y]2 > 0, (1.9) 

where K is the wavenumber of the (modulational) perturbations. From (1.6), i.e. 
lrI2 = -p+g, and (1.9) the corresponding conclusions summarized in figure 1 follow 
in a straightforward manner. Even simpler are the (in)stability arguments for the 
Irl = 0 solution. The rather trivial analysis leads to the instability criterion 

y2- (p-K”, ’  > 012, (1.10) 

which completes the instability discussions for the X-independent solutions of (1.1). 
A final remark is appropriate with respect to the case p = 0. Note that for K =I= 0 the 
two branches marked by [ > 0 correspond to a critical base in the sense of Lyapunov, 
where higher nonlinearities will determine the stability properties. 

We continue this introductory part by posing the question of whether other X- 
independent solutions, i.e. limit cycles according to the Poincard-Bendixson theorem 
(Guggenheimer & Holmes 1983), exist. Writing 

r = a+ib (1.11) 

(1.12) we obtain from (1.1) a = -aa-a2b-b3- pb + yb, 

6 = -ab+ab2+a3+pa+ya, (1.13) 

where the dot designates the time derivative. From these two equations obviously 

aa a6 
aa ab 
-+-= -201 < 0 (1.14) 

follows which, because of the logarithmic contraction for the area within a closed 
trajectory (Lichtenberg & Liebermann 1983 ; Miles 1984b), excludes the possibility of 
limit cycles. 

One of the main conclusions of Miles (19843) was that in the present system 
solitary waves can be parametrically excited. The existence of localized solutions was 
discussed and the bifurcation diagram was found. By some approximate stability 
method (Makhankov 1978; Whitham 1974) which we call the variation-of-action 
method (Laedke & Spatschek 1979) a completely stable solitary wave branch was 
predicted. As we shall elucidate in the next section, this soliton branch should be 
similar to the [ > 0 branches shown in figure 1. 

In this paper we want to emphasize the following points: (i) An exact instability 



592 E .  W. Laedke and K .  H .  Spatschek 
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sin 29, 

FIGURE 2. Construction of four possible phases at maximum from (1.8) and (2.3). Note that for 
,8 2 0 only the solutions pz and p4, corresponding to 5 > 0, are possible because of inequality (2.5). 

calculation is possible in the region of interest. (ii) Existing solitary wave solutions 
are not stable in the whole parameter regime. (iii) An instability occurs which is 
expected to  develop into a stable cnoidal-wave-type solution. 

I n  order to  demonstrate these conclusions, the paper is organized in the following 
way. I n  the next section we present the localized solitary wave solutions of (1.1). 
Their stability behaviour is analysed in $3  by variational principles. One special case 
cannot be treated by this method: its analysis is the main part of $4. All these 
analytical investigations are supplemented by a numerical solution of (1.1) in the 
relevant parameter regime. The numerics not only confirms the mathematical 
predictions ; it also shows the nonlinear development of the instability which, a t  the 
present time, is beyond any analytical tractability. 

2. Parametrically excited solitary waves 
The non-trivial stationary solitary wave solutions of (1.1) (for A = B = i) ,  first 

presented by Miles (1984b), can be calculated in the following way. We substitute 

r = ~s(X )  = Ge'v 
into (1.1) to obtain for G 

G + G3 + (p- 5) G = 0, 

where 5 is as defined in (1.8). The imaginary part of (1.1) leads to the condition 

a 
- = sin%. 
Y 

From (2.3) we immediately have the existence condition 

y > a. (2.4) 
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FIGURE 3. Bifurcation diagrams for solitary wave solutions. 
These should be compared to figure 1. 

Demanding localized solutions of (2.2), the requirement 

P < 6  (2.5) 

G = [2([-P)]:sech [([-P):X].  (2.6) 

is necessary. Then (2.2) has the well-known solitary wave solution 

Inequalities (2.4) and (2.5) lead to existence regions similar to those of the branches 
in figure 1 labelled by 6 > 0 or [ < 0. Solutions of (1.8) and (2.3) are shown 
graphically in figure 2. 

For P 2 0 we have two principle solutions, whereas for /3 < 0 even four solutions 
are possible as long as inequality (2.5) is satisfied. The corresponding bifurcation 
diagrams are shown in figure 3 which should be compared to figure 1. The additional 
information contained in figure 3, i.e. the stability or the instability of the various 
branches, respectively, is not yet available. Its derivation is the contents of the 
following sections. 

3. Instability by variational methods 
We next perturb the solitary wave solution (2.1) in the form 

r = (G+a+ib)eip, 
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to obtain the following dynamical equations for a and b :  
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a,a = H+b-25b, (3.2) 

a,b = -H-a-22ab. (3.3) 

Here, the Schrodinger operators 

H ,  E-i3%-G2+5-/3, (3.4) 

H -  -a%-3G2+5-/3 (3.5) 

have been introduced. Their spectral properties arc wcll-known : H, possesses the 
kernel function G, i.e. 

H + G  = 0 ;  (3.6) 

the continuum starts a t  7' = 5-/3 > 0 :  

X X 
H, 1 G d X ' = y 2  [ GdX'. 

J J 
(3.7) 

On the other hand, H- has a negative eigenvalue, 

and the kernel function a, G = G, = aG/aX, i.c. 

i3G 
H _ -  = 0. ax (3.9) 

For the following calculations it will be more appropriate to use 

H H+-25 (3.10) 

instead of H,. Then (3.2) is replaced by 

ci = Hb. (3.11) 

We now summarize the basic properties of the Schrodinger operators H and H-. 
For 5 < 0, H is positive definite because of the property (3.6). In addition, H- can be 
negative for even functions because (3.9) holds for an eigenfunction with one node. 
On the other hand, for 5 > 0 the situation is different. H is negative for odd functions 
provided $ - 2 <  < 0. This statement follows from the continuum limit (3.7). From 
the definition of 7' = 5-/3 we can write the latter condition in the form /3 > -5. Thus 
for p 2 0 the fact that  H can be negative for odd functions is straightforward. In the 
case ,8 < 0, we need the extra condition y2 > a2+P2 for a negative H. The operator 
H- (for 5 > 0) is positive definite for odd functions, being orthogonal to the kernel 
function G, (see (3.9)). 

These properties suggest combining (3.3) and (3.11) in the following forms: 

(a )  for 5 < 0 a,2a f a  = -HH-a-22aa, (3.12) 

( b )  for 5 > 0 a;b 3 6 = - H P H b - 2 a b .  (3.13) 

On introducing 6 = seat, (3.14) 
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and b = beat, (3.15) 

(3.12) and (3.13) become i=-HH-cZ+a2cZ, (3.16) 

d = - H- ~ b " +  a%, (3.17) 

respectively. In the following we use (3.16) for < < 0 and even perturbations a" and 
(3.17) for < > 0 and odd functions b" in the subspace perpendicular to G,, i.e. 

- 

b " ~ , d ~ =  ( ~ " I G , )  =o .  (3.18) J 
With these restrictions both equations can be considered to be of the same type: 

6 = -PN@+a2@, (3.19) 

where P is a positive operator and N has a negative eigenvalue. (For < < 0 : P = H, 
N = H-, and the functions @ are even. For g > 0: P = H-, N = H, and the functions 

are odd and perpendicular to G,, i.e. ($1 G , )  = 0.) In  Appendix A we discuss for 
the present case how a dynamical equation of the form (3.19) leads ~ with some 
restrictions for the test functions $ - to the variational formulation (Blaha, Laedke 
& Spatschek 1987) for the exponential growth rate F, 

(3.20) 

When applied to  our original problem (3.12) and (3.13), we clearly find (for more 
details see Appendix B) that because of the transformations (3.14) and (3.15) formula 
(3.20) will predict instability for (i) < < 0, as well as (ii) < > 0 and /3 > -<. 

If we look at figure 3, we have thus proven (i) instability for the 5 < 0 branches in 
all cases of p, and (ii) instability for the < > 0 branches except for /3 < 0 in the region 
a2 < y2 < a2+p2. We have therefore to conclude that the parametrically excited 
solitary waves are not stable in the whole parameter regime. For example, for /3 < 
0 and y2 > a2+p2 an instability occurs which, to  the best of our knowledge, has not 
been discussed so far in the literature. 

For the interpretation of that instability one cannot rely on the arguments for 
parametric instabilities of plane waves (see figure 1) .  If the physical picture for the 
latter were also to apply for solitary waves in general, the appearance of a stable 
solitary wave as shown in figures 3 and 4 would not be understandable. 

4. Stability in the region p < 0, g > 0, and a2 < y2 < 01' +p2 
Let us now consider the still-unsolved case of the existence of stable parametrically 

excited solitary waves in Faraday resonance. We demonstrate stability in the region 
p < O , <  > 0, and a2 < y2 < u2+p2 in two ways: first by perturbation theory and 
secondly by numerics (see $ 5 ) .  In  this section we present the simple but powerful 
perturbation scheme which has been successfully applied to other soliton problems 
by Zakharov, Kuznetsov & Rubenchik (1986). 

Before going into the details of the calculation let us mention one important 
physical point. When comparing with the experimental results by Wu et al. (1984), 
we can recognize that upper and lower bounds for the driver amplitude are observed 
experimentally. They correspond to the limitation a2 < y2 < a2 +/?I2. Furthermore, 
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when capillary effects are included (Miles 1984a), the region /3 < 0 effectively means 
w < wl( 1 +cT)~, where CT is the surface tension. Thus the right boundary of the driving 
frequency observed in the experiment also agrees with the predicted existence region 
/3 < 0 for stable solitary waves. 

Let us consider the region lcl 4 1/31 which can be realized by y z a and 1/31 9 a. I n  
this region, we rewrite ( 3 . 2 )  and ( 3 . 3 )  in the form 

a,a = H + b - c b ,  

a , b  = -H-a-<a-2ab, 

where fi + -  = - p - ~ z - p  x ( 4 . 3 )  

A- = -a;-3G2-/3.  (4.4) 

a :b=  r2b = - ( H - + c ) ( A + - c ) b - 2 d b  (4.5) 

The idea is to use a, - r, [el, and a as small quantities. When combining (4.1) and 
(4.2) in the form 

we obtain at lowest order the equation 
1 -  

0 = -H-H+ b,. 

Its  odd solution is b, = H i l G x ,  

where G is given by (2 .6 )  for 5 = 0. Within the scaling r2 - - aT - 2, where t is 
a smallness parameter, we develop the perturbation series for b = 6, + e2bz + . . . . The 
contribution b, follows from 

r2 Hi1GX = - H- A+ b, + [H- b, - cGx - 2arH;lGx ; (4.8) 

this equation has the solvability condition 

Note that 

(4.9) 

(4.10) 

is a positive constant which can be evaluated without any difficulties. Thus the 
solution of (4.9), 

r=-af (a2-ggt ; ) i ,  (4.11) 

clearly tells us that  ( i )  in accordance with the results of the previous section for 5 < 0 
an instability occurs, while (ii) for 5 > 0 the stationary state is stable with respect 
to odd perturbations. 

Let us now investigate the even solution 

b, = G (4.12) 

of (4.6). Using the same scaling as in the previous case, we find instead of (4.8) 

P G  = - H- H+ b, + cH- G - 2aTG. (4.13) 

Its  non-trivial solvability condition turns out to be 

(4.14) 
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Note that 

for the following reason. We have 

and (GI G)  = - ( G l H ~ l l  G) = -- - < 0. 
i a  

2 i3-P) 

(4.15) 

(4.16) 

(4.17) 

Thus, we again arrive a t  (4.11) and for g > 0 the stability with respect to even 
perturbations follows. 

We are aware of the fact that  this is not a proof of stability for the whole region 
/3 < 0 ,c  > 0, and a2 < y2 < a2+p2 in the strict mathematical sense. Going back to 
figure 3 ( c ) ,  we have just shown stability for the far left parts of the c > 0 branches. 
Since we complete this investigation by a numerical procedure which clearly shows 
that (for ,f3 < 0) a transition from stable to unstable behaviour occurs in the 5 > 0 
branches a t  y = (a2+p2); we do not aim here to  construct a Lyapunov functional. 
Just  to give the main idea of the latter procedure, we make the following remarks. 
One can prove that H is positive definite for odd functions whereas H- is positive 
semidefinite for odd functions in the region being under consideration in this section. 
Thus, for odd functions a, multiply (3.12) by H-' from the left in order to get a 
monotonically decreasing functional in time. The problem is that these considerations 
arc restricted to odd functions whereas for even perturbations no successful 
procedurc is known. We also shall not discuss the transition point from g < 0 to g > 0 
which is a critical case in the sense of Lyapunov. It turns out that the critical case 
is nonlinearly unstable. It is straightforward to prove - starting from the basic 
equation ( 1 . 1 )  - that  

a,[(Re r ) 2  + (Im r)'] = y(Im r ) 2 .  (4.18) 

Thus solutions with I m r  =+= 0 initially will grow. 

5. Numerical manifestation of the analytical predictions 
Equation (1 .1)  has been solved numerically by a nonlinear semi-implicit unitary 

Crank-Nicholson scheme (Spatschek et al. 1989). This allowed us (i) to  test the 
stability predictions of $4;  (i i)  to  verify the unstable behaviour in the complementary 
parameter regime, as pointed out in $3, and (iii) to  look for the nonlinear 
development of an unstable solitary wave. 

First, we investigated the parameter regime where stability is predicted. For ,f3 < 0 
and g > 0 several runs were performed in the region a2 < y2 < a2+p2. All of them 
confirmed the analytical predictions. A typical result is shown in figure 4. Secondly, 
we took solitary wave solutions as initial conditions in the unstable parameter 
regime. As expected, they all became unstable within a finite time ( t  x 20). Finally, 
and most interesting, we followed the (nonlinear) time-development of an unstable 
solitary wave. Typical runs are shown in figures 5 and 6. At the first stage ( t  5 50) 
the breakup of the unstable soliton is clearly visible (figure 5 ) .  At a later time, a nice 
spatially coherent structure in space develops. It starts from the centre (X = 0) and 
spreads to larger X-values. It can be interpreted as a stable cnoidal wave (see 
figure 6). 
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FIGURE 4. Space-time plot of a solitary wave (absolute value of the amplitude) for /3 = - l , a  = I ,  
y = 1 . 1 .  The solitary wave is stable, at least for the time of computation (0 ,< t < 100). 

FIGURE 5. Space-time plot of the absolute value of the amplitude of an unstable solitary wave 
for /3 = - 1, a = 1, y = 1.6. Initial phase of the instability for -60 < X < 60 and 0 < t < 75. 

FIGURE 6. The same as figure 5 for large times and small X. A new state appears which can be 
interpreted as a cnoidal wave. Here the practically unchanged distribution for - 15 < X < 15 is 
shown for the  times 50 < t < 65. 
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Appendix A. A variational principle for (3.19) 
Since P is a positive operator, we rewrite (3.19) in the form 

where the operator 

is also positive. Multiplying 

F = -(N-a2P-l) 

p-16 = Ftjj 

from the left by $ and integrating over space we find 

The constant of (time-) integration can be set to  zero if we choose appropriaie initial 
conditions, i.e. at t = 0 we demand $ = f@. Since F is positive, the constant r follows 
without problems from 

where @o is the initial distribution. 
Also multiplying (A 1 )  from the left by @ and integrating over space leads to  

( @ P I  6) = <@lFl@). (A 6) 

Since all the operators are self-adjoint, we can combine (A 4) and (A 6) to give 

where 

The following rearrangement using the Schwarz inequality, 

proves the result 

It has the solution (A 11) 

Since P and P-' are positive operators, unstable perturbations exist with exponential 
growth rate f. Going back to  ( A 5 )  we can maximize with respect to the initial 
distributions to obtain the largest exponential growth rate : 

When we use the definition (A 2), (3.20) follows. It should be mentioned that the 
right-hand side of inequality (A 12) actually represents the maximum exponential 
growth rate. 
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Appendix B. Growth rates in the unstable cases 
I n  $3  we have argued that all the unstable cases lead to equations of the type (3.19) 

with the result (3.20). A few additional remarks are necessary since we have 
subsidiary conditions to obey. Let us start with 6 > 0 when we use (3.17), i.e. 

i = - ~ - ~ b " + ~ * 6 .  (B 1)  

Let us restrict b" to odd functions with (61 G,) = 0, so that H- is positive definite. As 
discussed already, H is negative in the region of interest y2 > u2+/3*. For the second- 
order differential equation (B 1 )  we start with 

(61 G,),=, = (61 G,),=, = 0. (B 2) 

Then the differential equation (B 1 )  and (3.9) tell us that (b"lG,) remains zero in 
time. Thus we can use ($5 I G,) = 0 as a consistent subsidiary condition for all times. 
Next, we have to say a few words about the inversion procedure applied in (A 1). Of 
course, we can always add an arbitrary function from the kernel of P = H-, i.e. (A 1)  
reads in the present case 

~3 = - H ~ + ~ * H I ~ ~ " + ~ G , .  (B 3) 

Here ,u is a free parameter. We fix it, however, by the requirement that we remain 
in the subspace orthogonal to G,. Thus 

The rest follows along the lines outlined in Appendix A. The maximum growth rate 
for 5 > 0 in the region y2 > a2 +/3* is 

On the other hand, for < < 0 a similar calculation leads to 

when (3.16) is used. Both formulae prove the instability results summarized in $3. 
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